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Optical microscopy is one of themost widely used diagnostic meth-
ods in scientific, industrial, and biomedical applications. However,
while useful for detailed examination of a small number (<10,000)
of microscopic entities, conventional optical microscopy is incap-
able of statistically relevant screening of large populations
(>100,000,000) with high precision due to its low throughput and
limited digital memory size. We present an automated flow-
through single-particle optical microscope that overcomes this
limitation by performing sensitive blur-free image acquisition and
nonstop real-time image-recording and classification of microparti-
cles during high-speed flow. This is made possible by integrating
ultrafast optical imaging technology, self-focusing microfluidic
technology, optoelectronic communication technology, and infor-
mation technology. To show the system’s utility, we demonstrate
high-throughput image-based screening of budding yeast and rare
breast cancer cells in blood with an unprecedented throughput
of 100,000 particles∕s and a record false positive rate of one in a
million.
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Optical microscopy is one of the most widely used methods in
a diverse range of advanced research, industrial, and clinical

settings, including microelectronics, food science, oceanography,
archaeology, environmental science, energy science, microbiol-
ogy, mineralogy, and pathology (1–3). High information content
spatial metrics provided by imaging are used to characterize
microscopic particles such as emulsions, microorganisms, and
cells in particle synthesis, ecosystem monitoring, biofuel formula-
tion, drug discovery, histopathology, and cytology-based diagnos-
tics (3–5). An impressive arsenal of optical nanoscopy methods
enables imaging of cellular structures beyond the diffraction limit
of light (6–8). Unfortunately, while there has been breathtaking
progress in improving spatial resolution in the last two decades,
mostly overlooked is the temporal resolution of imaging systems.

While useful for visual inspection of many individual micro-
particles without human intervention, conventional automated
microscopy does not have high throughput and is hence unable
to evaluate, analyze, and screen large populations with high
statistical accuracy. High-throughput detection is essential to
rapidly assay morphological and biochemical properties in a
reasonable period of time. Unfortunately, the throughput of
state-of-the-art automated microscopes is only up to approxi-
mately 1;000 particles∕s (9–12), limiting the particle count. As a
benchmark, this throughput is significantly lower than that of
single-pixel high-throughput flow analyzers such as electronic
particle counters (13, 14) and flow cytometers (approximately
100;000 particles∕s) (15, 16), which trade increased throughput
for a lack of spatial resolution. Because of this trade off, such
systems are often unable to resolve single, multiple, and clustered

particles or unusually shaped particles as well as to distinguish
debris and nonspecific labeling and hence produce a large num-
ber of false positive events or inaccurate subpopulation counts.

While high-end digital cameras [i.e., charge-coupled device
(CCD) and complementary metal-oxide-semiconductor (CMOS)
cameras] are now able to perform imaging at a speed approaching
1 million frames∕s (17–19), they are not well suited for high-
throughput microscopy. First, a critical limitation that hampers
imaging of particles flowing at high speeds is the relatively long
shutter speed or exposure time (≥1 μs) (17–19) that results in
motion blur and loss of resolution during the high-speed flow,
hence degrading specificity. Another limitation is the time
needed to download the image from the array of thousands of
pixels. To achieve high frame rates, the number of pixels that are
employed must be reduced in a process known as partial readout
(17–21). The penalty is that image resolution is lost at high frame
rates. Furthermore, there is a fundamental trade off between
sensitivity and speed—at high frame rates, fewer photons are
captured during each frame, leading to reduction in sensitivity.
Finally, currently digital image processing cannot be performed
in real time due to the storage and access of the massive amount
of digital data that is produced during high-speed imaging and
hence requires many days of off-line digital processing. This
translates into a limited particle count, thus compromising statis-
tical precision in high-throughput screening. These limitations
prevent automated microscopy from analyzing a large population
of particles with high statistical precision in a practical period
of time.

To address the needs and fill in the technological gap between
the automated microscope and high-throughput flow analyzer,
we propose and demonstrate an automated flow-through single-
particle optical microscopy system that can evaluate, analyze, and
screen a large population of particles with high specificity, high
sensitivity, and high statistical precision in a short time. This
method builds on a unique integration of (i) an ultrafast optical
imaging modality known as serial time-encoded amplified micros-
copy (STEAM) (22, 23) for blur-free imaging of particles in high-
speed flow, (ii) inertial microfluidic technology for sheath-free
focusing and ordering of particles with inertial forces (24, 25),
and (iii) hybrid optoelectronic image processing circuitry for
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real-time image processing. The integrated system transforms
particles in well-controlled microfluidic flow into a series of
E-slides—an electronic version of glass slides—on which particles
of interest are digitally analyzed. With the power of optoelectro-
nic communication and information technologies, this property
enables fully automated real-time image-recording and classifica-
tion of a large number of particles through their morphological
and biochemical features. To demonstrate our technology’s uti-
lity, we show real-time nonstop image-based identification and
screening of budding yeast cells at different budding stages and
rare breast cancer cells in blood with an unprecedented through-
put of 100;000 particles∕s and a record false positive rate of one
in a million.

Results
Principle of the High-Throughput Imaging Flow Analyzer.Our system,
which we refer to as the STEAM flow analyzer (Fig. 1A and SI
Text and Table S1), consists of three subsystems: (i) the microflui-
dic device (Fig. 1B and SI Text and Table S2), (ii) the STEAM
camera (Fig. 1A and SI Text and Table S1), and (iii) the real-time
optoelectronic time-stretch image processor (Fig. 1C and SI Text
and Table S3). An animated video (Movie S1) shows the inte-
grated functionality of the system. The STEAM flow analyzer
operates in three steps. First, particles are controlled to flow at
a uniform velocity and focused and ordered by inertial lift forces
in the microfluidic channel. Second, the STEAM camera takes
images of the fast-flowing particles. Finally, the real-time opto-
electronic time-stretch image processor processes the images
optically and electronically and then performs automated particle
screening in real time.

The STEAM flow analyzer employs inertial microfluidic tech-
nology (Fig. 1B and Movie S1). This method provides uniform
positions and velocities for particles through intrinsic inertial lift
forces (important for generation of clear E-slides) while eliminat-
ing the need for sheath fluid, which is traditionally required for
hydrodynamic focusing in conventional flow cytometers. While
inertial forces are typically assumed to be negligible in microflui-
dic systems, they can, in fact, be important when the flow rate in
microchannels is high. Particles in finite-inertia confined channel
flows focus to cross-sectional dynamic equilibrium positions that
correspond with the fold of symmetry of the channel cross-section
(26). Furthermore, longitudinal ordering (i.e., stabilizaed inter-
particle or intercell spacing along the length of the channel) re-
sults from inertial lift forces and the flow field acting together
(27). In some of our previous work, we determined an optimal
balance between inertial lift forces and Dean drag forces, coun-
ter-rotating vortices perpendicular to primary channel flow, to
accurately position a range of particle sizes to a single streak with
two heights within the channel at a high flow rate (26). Here we
reduced the length of one of these optimized channels to de-
crease its pressure and lowered the height of the channel to bring
the distinct equilibrium positions in the vertical plane into closer
proximity. To ensure stability in real-time image processing, the
microfluidic device was fabricated by replica molding in thermo-
set polyester due to its high stiffness and ability to sustain high
pressures (SI Text, Fig. S1, and Table S2) (28).

The STEAM camera first captures fast sequential images with
laser pulses and then stretches image-encoded pulses in time so
that they can be digitized and processed in real time (see SI Text).
During the time-stretch process, images are also optically ampli-
fied to overcome the thermal noise inherent in photon-to-elec-
tron conversion. In the first step, a pair of diffraction gratings
spatially disperses the broadband optical pulse into a rainbow de-
signed to capture 1D line scans of particles flowing through the
channel. The temporal duration of these pulses is 27 ps (shutter
speed), and they occur at a repetition rate of 36.7 MHz (line scan
rate), while the average illumination power is 500 μW. The back-
reflected pulses from the microfluidic device are directed via

Fig. 1. STEAM flow analyzer. An animated video that shows the inte-
grated functionality of the system is available (Movie S1). (A) Schematic
of the STEAM flow analyzer that highlights the optical layout of the
STEAM camera and real-time optoelectronic time-stretch image processor.
The STEAM camera takes blur-free images of fast-flowing particles in the
microfluidic device. The acquired images are optoelectronically processed
and screened in the real-time optoelectronic time-stretch image processor.
(B) Microfluidic device in which particles are controlled to flow at a uni-
form velocity and focused and ordered by inertial lift forces in the micro-
fluidic channel. (C) Field-programmable digital image processor that
captures particles and performs fully automated particle classification in
real time. It consists of (i) a high-speed analog-to-digital converter (ADC);
(ii) a field-programmable gate array (FPGA) for particle capture, E-slide
generation, and coarse particle classification; (iii) an on-board memory cir-
cuit for storing selected E-slides; and (iv) a central processing unit (CPU) for
fine particle classification.
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an optical circulator toward the real-time optoelectronic time-
stretch image processor followed by the high-speed photodetec-
tor and the field-programmable digital image processor. Two-
dimensional E-slides are then constructed from the digitized 1D
frames and made available for screening.

As shown in Fig. 1A, the real-time optoelectronic time-stretch
image processor consists of an amplified dispersive Fourier trans-
former (29–32), a high-speed photodetector, and a field-pro-
grammable digital image processor. First, the amplified disper-
sive Fourier transformer serializes the image-encoded pulse
(i.e., the 1D image frame) into a pixel stream that is slowed down
in time so that it can be digitized and processed in real time.
While it is being stretched in time, the image-carrying pulse is
amplified in the optical domain through distributed Raman
amplification in the time-stretch element. Raman amplification
is chosen because it has a broad and flexible optical spectrum
and also leads to low noise figure in the frequency-to-time map-
ping process (29–32). The optical image amplification (approxi-
mately 1,000x) before photon-to-electron conversion is critical as
it enables high-throughput microscopy in the ultrashort exposure
time (27 ps) without the need for a high-intensity illuminator. In
addition, the ultrafast shutter speed freezes any motion of parti-
cles in high-speed flow, allowing for acquisition of blur-free
images. The amplified 1D data stream is detected by the high-
speed single-pixel photodetector, eliminating the need for a
detector array and hence readout time limitations. After analog-
to-digital conversion by a real-time digitizer, the data is processed
in real time in the field-programmable digital image processor
with a programmable multi-stage decision-making architecture
(Fig. 1C and Movie S1 and SI Text) that employs a field-program-
mable gate array (FPGA) (33, 34), an on-board memory circuit,
and a central processing unit (CPU). Specifically, the function of
the FPGA is to identify the presence of particles (ignoring the
unimportant space between the particles), generate E-slides for
the particles, coarsely down-select the slides (i.e., the particles)
through their morphological and biochemical markers, and store
those selected in the memory. As a second-step screening pro-
cess, the CPU performs fine particle classification on the stored
slides with more stringent algorithms such as decision-tree clas-
sification and supervised learning methods (35, 36).

The STEAM flow analyzer’s blur-free image acquisition en-
ables differentiation of particles from a heterogeneous popula-
tion. Fig. 2 shows E-slides of fast-flowing particles of various
species in the microfluidic channel captured by the STEAM
flow analyzer. Here the particles were controlled to flow at a uni-
form speed of 4 m∕s, which corresponds to a throughput of
100;000 particles∕s—a very fast flow, but motion blur is absent
in the images due to the ultrafast shutter speed of the STEAM
camera (27 ps). For comparison, Fig. 2 also shows images of the
same types of particles under the same flow conditions captured
by a state-of-the-art CMOS camera (see SI Text). These images
show that the CMOS camera’s lower shutter speed (1 μs) and lack
of optical image amplification significantly reduced the sensitivity
and caused motion blur in the images, rendering the camera
unable to classify particles reliably. For further comparison, sta-
tionary particles of the same types on a glass slide were obtained
under a conventional microscope with a CCD camera with a
much longer exposure time (shutter speed) of 17 ms (Fig. 2
and Fig. S2). Despite the fact that the STEAM camera is many
orders of magnitude faster than the CCD camera, the two cam-
eras share similar image quality (i.e., sensitivity and resolution).

Screening of Budding Yeast with the High-Throughput Imaging Flow
Analyzer.To show the utility of the STEAM flow analyzer, we used
it to demonstrate high-throughput screening of Saccharomyces
cerevisiae, commonly known as budding yeast. Budding yeast
are important in food science, are used as a model for studying
eukaryotic cell biology, and are engineered to produce protein

therapeutics. Growth in yeast can be studied and optimized by
flow cytometry or microscopy—both of which possess specific
limitations. Biochemical analysis alone via flow cytometry is
insufficient for analysis of complex checkpoints and detection
of minor perturbations in the cell cycle (37) and provides poor
characterization of the asymmetric growth of yeast in comparison
with imaging (38). A high-throughput microscopy technique such
as our STEAM flow analyzer could provide a powerful screening
tool to assay morphological changes potentially accompanying
systematic gene knockouts or other molecular perturbations.

The STEAM flow analyzer can efficiently identify and screen
budding yeast cells and perform subpopulation analysis in real
time. Here we programmed the FPGA and CPU to capture
incoming cells, distinguish between budding and unbudded cells,
and classify budding cells based on different budding stage
(Fig. 3A and SI Text). Specifically, the FPGA performs cell cap-
ture while ignoring the blank images and stores the corresponding
E-slides in the on-board memory (1 GB) which can save up to
approximately 16,000 v slides (each of which has 64/v KB), where
v is the flow speed in units of m∕s (Fig. S3A). Here because the
2D E-slides are constructed from a series of 1D frames with the
second dimension provided by the flow, the size of each slide
decreases, and hence the total number of slides that can be saved
in the memory increases as the flow speed increases. We estimate

Fig. 2. Performance of the STEAM camera and comparison with a conven-
tional CCD camera and a state-of-the-art CMOS camera. E-slides of flowing
particles of various species in the microfluidic device were generated by the
STEAM flow analyzer with the built-in STEAM camera (27 ps shutter speed,
128 × 512 pixels, 25 dB optical image gain). The E-slides are compared with
images of the same particles captured by a state-of-the-art CMOS camera
(1 μs shutter speed, 32 × 32 pixels, no optical image gain) under the same
flow. To operate at these high speeds, the CMOS camera used partial read-
out, limiting the number of pixels to 32 × 32. Here the particles were con-
trolled to flow at a uniform speed of 4 m∕s, which corresponds to a
throughput of 100;000 particles∕s based on the volumetric flow rate. The
high-speed motion of the particles was frozen by the ultrafast shutter speed
(ultrashort exposure time) of the STEAM camera (27 ps) yet without sacrifi-
cing sensitivity due to the optical image amplification whereas the reduced
sensitivity and motion blurs caused by the CMOS camera’s much lower shut-
ter speed and lack of optical image amplification are evident. For further
comparison, stationary particles of the same types on a glass slide were
obtained under a conventional microscope with a CCD camera with a much
longer exposure time (17 ms shutter speed, 1;280 × 1;024 pixels, no optical
image gain). Despite the fact that the STEAM camera is many orders of mag-
nitude faster than the CCD camera, the two cameras share similar image
quality (i.e., sensitivity and resolution).
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that the flow speed can be set up to 8 m∕s (corresponding to
200;000 cells∕s) while retaining reasonable image quality and
classification precision. The saved E-slides are then subject to the
CPU’s classification process (Fig. S3B) in which the budding yeast
cells are isolated and classified by daughter-to-mother ratio in
size to generate a histogram for the subpopulations using a de-
cision-tree classification method (Fig. 3B). For comparison, we
also performed normal microscopic observation of yeast cells
with a CCD camera and performed digital image processing si-
milar to the automated classification on the CPU in the STEAM
flow analyzer and found good agreement between our high-
throughput method and the conventional method (Fig. S3C), sug-
gesting that the STEAM flow analyzer is useful for analysis of
yeast growth behavior with high statistical precision. Because
the STEAM flow analyzer operates in real time, time-resolved
statistical analysis of the subpopulations can also be performed
to control and optimize the budding process. Furthermore, simi-
lar capture and subpopulation analysis with real-time feedback is
expected to be useful for optimization of emulsions for applica-
tions in cosmetics and pharmaceutics.

Rare Cell Detection with the High-Throughput Imaging Flow Analyzer.
To further show the utility of the STEAM flow analyzer, we used
it to demonstrate rare cell detection. While statistically insignif-
icant and hence often ignored, rare events among a large hetero-
geneous population of cells in blood such as hematopoietic stem
cells (39), antigen-specific Tcells (40), and circulating tumor cells
(41, 42) (Table S4) are important in biomedical research as well as

medical diagnostics and therapeutics (43). Such rare cells can be
identified by a combination of morphological (i.e., size, circular-
ity, and clustering) and biochemical (i.e., surface antigens) mar-
kers. Here our model for rare cells is the MCF7 cell line (breast
cancer) spiked in blood. Red blood cells are lysed with a hypo-
tonic lysing agent while MCF7 cells are fixed with formaldehyde
and coated with metal beads with a diameter of 1 μm via an anti-
body to EpCAM (a cell surface molecule that exists on the sur-
face of epithelial cells but not on the surface of blood cells). Our
observation under a conventional microscope indicates that ap-
proximately 80% of MCF7 cells are coated with 5–20 metal
beads (Fig. S2).

To demonstrate how surface marker detection could be
achieved and coupled with morphological analysis in our system,
we performed off-line statistical analysis of white blood cells and
coated MCF7 cells. This validation is important because it is re-
quired to build a fully trained model for our supervised learning
method or support vector machine (SVM) (35, 36) to be imple-
mented on the FPGA and CPU (see SI Text). The SVM model
predicts whether a new target (i.e., cell) falls into any of the pre-
defined cell categories and is then used to identify the target cells
in real time. Fig. 4A shows scatter plots of white blood cells and
MCF7 cells based on the cell size (i.e., diameter) and presence of
surface antigens (i.e., metal beads) produced by our system. The
plots indicate that the system is capable of differentiating most
white blood cells and MCF7 cells with high specificity using a sin-
gle molecular marker. For comparison, Fig. S4A shows, using a
conventional flow cytometer, scatter plots of the same cell types
based on forward- and side-scattered light intensities as well as
PerCP/Cy5.5-antiCD45 and FITC-antiEpCAM (fluorescence
markers), which selectively bind to white blood cells and MCF7
cells, respectively (see SI Text). The scattered light intensity plots
do not allow for differentiation of the two cell types due to the
significant overlap between the two groups. Furthermore, the
overlap in the fluorescence intensity limits the specificity of the
instrument down to approximately 0.1% subpopulations—inade-
quate for identification of a cell type that is rarer than 0.1% of the
population (Table S4).

With the fully trained cell classification model, the STEAM
flow analyzer can detect MCF7 cells as rare as one in a million
in a short period of time. Here we programmed the FPGA and
CPU such that the FPGA captures incoming cells and performs
size-based cell classification (Fig. S4B) while the CPU performs
classification by circularity and presence of metal beads (see SI
Text). The threshold for the size-based selection is set such that
smaller MCF7 cells are also selected at the expense of detecting
larger white blood cells (Fig. 4A). Yet, this process efficiently re-
jects more than 99.9995% of white blood cells, all residual red
blood cells, and all free-floating metal beads, leaving only a small
number of false positive events (on the order of 100 per mL of
lysed blood) along with true positive events (Fig. 4B). The
FPGA’s ability to filter out the large number of blood cells and
avoid storing the massive amount of digital data enables nonstop
real-time operation. The down-selected E-slides (i.e., cell images)
are stored in the memory (1 GB) which can save up to approxi-
mately 4,000 v slides (each of which has 256/v KB), where v is the
flow speed in units of m∕s as described above. The stored slides
are then subject to the CPU’s selection process in which the cells
are further classified by circularity and presence of metal beads
(Fig. S4C). This process rejects almost all the false positive events
(i.e., multiple, unfocused, or unordered white blood cells) that
have survived from the initial selection process on the FPGA
while leaving true positive events and a very small number of false
positive events (on the order of 10 per mL of lysed blood), which
arise due to image processing artifacts and can further be rejected
by human visual inspection (Fig. S4D).

Our statistical analysis of the capture efficiency indicates
that the field-programmable digital image processor can identify

Fig. 3. High-throughput screening of budding yeast with the STEAM flow
analyzer. (A) Screening process of the field-programmable digital image
processor. The FPGA performs cell capture while ignoring the blank images
between cells and stores the corresponding E-slides into the on-board mem-
ory. The CPU then distinguishes between budding and unbudded cells, clas-
sifies the budding cells by daughter-to-mother ratio in size, and finally
generates a histogram for the subpopulations. (B) Subpopulation analysis
of yeast at different stages of budding. The total number of captured yeast
cells is 75,509, about 34% of which constitutes budding cells. Here the entire
procedure that consists of the measurement, image analysis, and histogram
generation takes less than a few minutes. Because the STEAM flow analyzer
operates in real time, time-resolved statistical analysis of the subpopulations
can also be performed to control and optimize the budding process. Further-
more, similar capture and subpopulation analysis can also be applied to emul-
sions for applications in cosmetics and pharmaceutics.
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extremely rare cells with a high efficiency of 75% (limited by the
imperfect coating efficiency and missing smaller MCF7 cells in
the FPGA selection process) (Fig. 4C). Furthermore, our receiver
operating characteristic (ROC) (44, 45) curve analysis of the re-
sults indicates that our method is sufficiently sensitive for detec-
tion of approximately one MCF7 cell in a million white blood
cells and is 100 times better in terms of false positive rate than
the conventional flow cytometer (Fig. 4D) yet without sacrificing
throughput (see SI Text). Here all the measurements were per-
formed at a throughput of 100;000 cells∕s, corresponding to
screening of 10 mL of lysed blood in less than 15 min.

Discussion
We have developed a high-throughput single-microparticle flow-
through image analyzer for real-time image acquisition and
screening of a large heterogeneous population of particles. By
overcoming the technological limitations that exist in conven-
tional automated microscopes (with many pixels and a through-
put of approximately 1;000 particles∕s) (Table S5) and high-
throughput flow analyzers (with a single pixel and approximately
100;000 particles∕s throughput), our system has achieved real-
time image-based screening with high sensitivity (75%), high
specificity (one in a million), and high statistical precision (ap-
proximately 100;000 particles∕s) simultaneously. Here the
throughput is only limited by the microfluidic device’s tolerance

to high pressures caused by high flow rates, not the STEAM cam-
era’s image acquisition speed or the field-programmable digital
image processor’s processing speed. We estimate that the
throughput can be increased to 200;000 particles∕s while retain-
ing reasonable image quality and classification precision
(Table S1). Our method can also be combined with a conventional
cell sorter to sort out rare target cells for further genetic analysis
of the cells. Furthermore, our method can, in principle, work at
shorter wavelengths for higher spatial resolution, provided that
proper optical components are available.

While in our proof-of-concept demonstration, we showed
high-throughput screening of budding yeast and detection of rare
breast cancer cells spiked in blood, our method should also be
amenable to other applications in which high-throughput micro-
scopy is required. Such applications include imaging and detec-
tion of bioparticles of interest in oceanography (e.g., phytoplank-
tons), energy science (e.g., oil emulsions and engineered
microbes), environmental science, food science, cosmetics, phar-
maceutics, and medicine (e.g., other rare cell types listed in
Table S4).

Materials and Methods
The initial concentration of cells that were used for the rare cell detection
measurements was determined by a hemacytometer. Four counts were per-
formed and the mean and standard deviation were calculated. Clusters of

Fig. 4. Rare cell detection with the STEAM flow analyzer. (A) Scatter plots of white blood cells andMCF7 cells based on the cell size (i.e., area) and the presence
of the surface antigens (i.e., metal beads). The total number of events is approximately 10,000 for both cell types. This statistical analysis is used to build amodel
and train the supervised learning method and hence the algorithms to run the field-programmable digital image processor. The threshold for the size-based
selection performed on the FPGA is set such that smaller MCF7 cells are also selected at the expense of detecting larger white blood cells. The rare white blood
cell events that overlap with the distribution ofMCF7 cells are doublets or clusters and can hence be rejected by imaging (which is not possible with single-point
detection methods). (B) Selection process of the field-programmable digital image processor. The FPGA performs cell capture, coarse size-based classification,
and filters out more than 99.9995% of white blood cells while leaving only false positive events of the order of 100 per mL of lysed blood along with true
positive events. The CPU then performs fine classification by circularity and presence of metal beads and further down-selects cells by an order of magnitude,
leaving true positive events and false positive events of the order of 10 permL of lysed blood, which arise due to image processing artifacts which can further be
rejected by human visual inspection. (C) Statistical analysis of the system’s capture efficiency for various concentrations. The results indicate that the field-
programmable digital image processor can identify extremely rare cell with a high efficiency of 75% (limited by the imperfect coating efficiency and missing
smaller MCF7 cells in the FPGA selection process). Here all the measurements were performed with bead-coated MCF7 cells spiked in buffer containing white
blood cells from 3 mL of lysed blood (approximately 80 million white blood cells) at a throughput of 100;000 cells∕s. Individual samples were measured four
times, establishing that the classification is highly repeatable (indicated by the vertical error bars). Moreover, the correlation of detectedMCF7 cells with spiked
MCF7 cells is good (r 2 ¼ 0.94). The horizontal deviations can be attributed to several known sources of error in the spiking method including the initial
hemacytometer count (see Materials and Methods). (D) ROC curve analysis of the STEAM flow analyzer in comparison with the conventional flow cytometer.
Our method is sufficiently sensitive for detection of approximately one MCF7 cell in a million white blood cells (i.e., a false positive rate of approximately 10−6)
and is two orders of magnitude better in terms of false positive rate than the conventional scattering- and fluorescence-based flow cytometer yet without
sacrificing throughput.
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cells were counted as a single cell. The fate of these clusters in the microflui-
dic device is unclear; clusters could be filtered out upstream, traverse the
channel as a cluster, or break up into smaller clusters or individual cells.
The coated MCF7 cells were diluted into 3 mL of lysed blood. The resulting
concentrations were 0, 5, 10, 50, 100, and 500 coatedMCF7 cells per 3 mL. The
standard deviation of the initial count is expected to decrease by the dilution
factor for each spiked sample. Other sources of error, such as in the process of
pipetting, are more difficult to quantify due to the lack of comparable tech-
nology for detecting extremely rare events or low concentrations of cells. The
fit function used in Fig. 4C is y ¼ ax þ b, where x and y are the spiked and
captured numbers of MCF7 cells, respectively, a is the capture efficiency, and
b is the contamination. For large x, the fit function asymptotically approaches
y ¼ ax. From the fit, the capture efficiency was found to be 75% with a coef-
ficient of determination of 0.94, indicating that the regression line represents
the data well.
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